std/complex

    Dark Mode
Search:
  Source   Edit

This module implements complex numbers and basic mathematical operations on them.

Complex numbers are currently generic over 64-bit or 32-bit floats.

Example:

import std/complex
from std/math import almostEqual, sqrt

func almostEqual(a, b: Complex): bool =
  almostEqual(a.re, b.re) and almostEqual(a.im, b.im)

let
  z1 = complex(1.0, 2.0)
  z2 = complex(3.0, -4.0)

assert almostEqual(z1 + z2, complex(4.0, -2.0))
assert almostEqual(z1 - z2, complex(-2.0, 6.0))
assert almostEqual(z1 * z2, complex(11.0, 2.0))
assert almostEqual(z1 / z2, complex(-0.2, 0.4))

assert almostEqual(abs(z1), sqrt(5.0))
assert almostEqual(conjugate(z1), complex(1.0, -2.0))

let (r, phi) = z1.polar
assert almostEqual(rect(r, phi), z1)

Types

Complex[T] = object
  re*, im*: T
A complex number, consisting of a real and an imaginary part.   Source   Edit
Complex64 = Complex[float64]
Alias for a complex number using 64-bit floats.   Source   Edit
Complex32 = Complex[float32]
Alias for a complex number using 32-bit floats.   Source   Edit

Procs

func complex[T: SomeFloat](re: T; im: T = 0.0): Complex[T]
Returns a Complex[T] with real part re and imaginary part im.   Source   Edit
func complex32(re: float32; im: float32 = 0.0): Complex32 {....raises: [], tags: [].}
Returns a Complex32 with real part re and imaginary part im.   Source   Edit
func complex64(re: float64; im: float64 = 0.0): Complex64 {....raises: [], tags: [].}
Returns a Complex64 with real part re and imaginary part im.   Source   Edit
func abs[T](z: Complex[T]): T
Returns the absolute value of z, that is the distance from (0, 0) to z.   Source   Edit
func abs2[T](z: Complex[T]): T
Returns the squared absolute value of z, that is the squared distance from (0, 0) to z. This is more efficient than abs(z) ^ 2.   Source   Edit
func conjugate[T](z: Complex[T]): Complex[T]
Returns the complex conjugate of z (complex(z.re, -z.im)).   Source   Edit
func inv[T](z: Complex[T]): Complex[T]
Returns the multiplicative inverse of z (1/z).   Source   Edit
func `==`[T](x, y: Complex[T]): bool
Compares two complex numbers for equality.   Source   Edit
func `+`[T](x: T; y: Complex[T]): Complex[T]
Adds a real number to a complex number.   Source   Edit
func `+`[T](x: Complex[T]; y: T): Complex[T]
Adds a complex number to a real number.   Source   Edit
func `+`[T](x, y: Complex[T]): Complex[T]
Adds two complex numbers.   Source   Edit
func `-`[T](z: Complex[T]): Complex[T]
Unary minus for complex numbers.   Source   Edit
func `-`[T](x: T; y: Complex[T]): Complex[T]
Subtracts a complex number from a real number.   Source   Edit
func `-`[T](x: Complex[T]; y: T): Complex[T]
Subtracts a real number from a complex number.   Source   Edit
func `-`[T](x, y: Complex[T]): Complex[T]
Subtracts two complex numbers.   Source   Edit
func `*`[T](x: T; y: Complex[T]): Complex[T]
Multiplies a real number with a complex number.   Source   Edit
func `*`[T](x: Complex[T]; y: T): Complex[T]
Multiplies a complex number with a real number.   Source   Edit
func `*`[T](x, y: Complex[T]): Complex[T]
Multiplies two complex numbers.   Source   Edit
func `/`[T](x: Complex[T]; y: T): Complex[T]
Divides a complex number by a real number.   Source   Edit
func `/`[T](x: T; y: Complex[T]): Complex[T]
Divides a real number by a complex number.   Source   Edit
func `/`[T](x, y: Complex[T]): Complex[T]
Divides two complex numbers.   Source   Edit
func `+=`[T](x: var Complex[T]; y: Complex[T])
Adds y to x.   Source   Edit
func `-=`[T](x: var Complex[T]; y: Complex[T])
Subtracts y from x.   Source   Edit
func `*=`[T](x: var Complex[T]; y: Complex[T])
Multiplies x by y.   Source   Edit
func `/=`[T](x: var Complex[T]; y: Complex[T])
Divides x by y in place.   Source   Edit
func sqrt[T](z: Complex[T]): Complex[T]
Computes the (principal) square root of a complex number z.   Source   Edit
func exp[T](z: Complex[T]): Complex[T]
Computes the exponential function (e^z).   Source   Edit
func ln[T](z: Complex[T]): Complex[T]
Returns the (principal value of the) natural logarithm of z.   Source   Edit
func log10[T](z: Complex[T]): Complex[T]

Returns the logarithm base 10 of z.

See also:

  Source   Edit
func log2[T](z: Complex[T]): Complex[T]

Returns the logarithm base 2 of z.

See also:

  Source   Edit
func pow[T](x, y: Complex[T]): Complex[T]
x raised to the power of y.   Source   Edit
func pow[T](x: Complex[T]; y: T): Complex[T]
The complex number x raised to the power of the real number y.   Source   Edit
func sin[T](z: Complex[T]): Complex[T]
Returns the sine of z.   Source   Edit
func arcsin[T](z: Complex[T]): Complex[T]
Returns the inverse sine of z.   Source   Edit
func cos[T](z: Complex[T]): Complex[T]
Returns the cosine of z.   Source   Edit
func arccos[T](z: Complex[T]): Complex[T]
Returns the inverse cosine of z.   Source   Edit
func tan[T](z: Complex[T]): Complex[T]
Returns the tangent of z.   Source   Edit
func arctan[T](z: Complex[T]): Complex[T]
Returns the inverse tangent of z.   Source   Edit
func cot[T](z: Complex[T]): Complex[T]
Returns the cotangent of z.   Source   Edit
func arccot[T](z: Complex[T]): Complex[T]
Returns the inverse cotangent of z.   Source   Edit
func sec[T](z: Complex[T]): Complex[T]
Returns the secant of z.   Source   Edit
func arcsec[T](z: Complex[T]): Complex[T]
Returns the inverse secant of z.   Source   Edit
func csc[T](z: Complex[T]): Complex[T]
Returns the cosecant of z.   Source   Edit
func arccsc[T](z: Complex[T]): Complex[T]
Returns the inverse cosecant of z.   Source   Edit
func sinh[T](z: Complex[T]): Complex[T]
Returns the hyperbolic sine of z.   Source   Edit
func arcsinh[T](z: Complex[T]): Complex[T]
Returns the inverse hyperbolic sine of z.   Source   Edit
func cosh[T](z: Complex[T]): Complex[T]
Returns the hyperbolic cosine of z.   Source   Edit
func arccosh[T](z: Complex[T]): Complex[T]
Returns the inverse hyperbolic cosine of z.   Source   Edit
func tanh[T](z: Complex[T]): Complex[T]
Returns the hyperbolic tangent of z.   Source   Edit
func arctanh[T](z: Complex[T]): Complex[T]
Returns the inverse hyperbolic tangent of z.   Source   Edit
func coth[T](z: Complex[T]): Complex[T]
Returns the hyperbolic cotangent of z.   Source   Edit
func arccoth[T](z: Complex[T]): Complex[T]
Returns the inverse hyperbolic cotangent of z.   Source   Edit
func sech[T](z: Complex[T]): Complex[T]
Returns the hyperbolic secant of z.   Source   Edit
func arcsech[T](z: Complex[T]): Complex[T]
Returns the inverse hyperbolic secant of z.   Source   Edit
func csch[T](z: Complex[T]): Complex[T]
Returns the hyperbolic cosecant of z.   Source   Edit
func arccsch[T](z: Complex[T]): Complex[T]
Returns the inverse hyperbolic cosecant of z.   Source   Edit
func phase[T](z: Complex[T]): T
Returns the phase (or argument) of z, that is the angle in polar representation.

result = arctan2(z.im, z.re)

  Source   Edit
func polar[T](z: Complex[T]): tuple[r, phi: T]
Returns z in polar coordinates.

result.r = abs(z)
result.phi = phase(z)

See also:

  Source   Edit
func rect[T](r, phi: T): Complex[T]
Returns the complex number with polar coordinates r and phi.

result.re = r * cos(phi)
result.im = r * sin(phi)

See also:

  Source   Edit
func `$`(z: Complex): string
Returns z's string representation as "(re, im)".

Example:

doAssert $complex(1.0, 2.0) == "(1.0, 2.0)"
  Source   Edit

Templates

template im(arg: typedesc[float32]): Complex32
Returns the imaginary unit (complex32(0, 1)).   Source   Edit
template im(arg: typedesc[float64]): Complex64
Returns the imaginary unit (complex64(0, 1)).   Source   Edit
template im(arg: float32): Complex32
Returns arg as an imaginary number (complex32(0, arg)).   Source   Edit
template im(arg: float64): Complex64
Returns arg as an imaginary number (complex64(0, arg)).   Source   Edit